Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400384, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708684

RESUMO

Artificial optical patterns bring wide benefits in applications like structural color display, photonic camouflage, and electromagnetic cloak. Their scalable coating on large-scale objects will greatly enrich the multimodal-interactive society. Here, a droplet-pen writing (DPW) method to directly write multi-spectral patterns of thin-film graphene is reported. By amphiphilicity regulations of 2D graphene nanosheets, ultra-uniform and ultrathin films can spontaneously form on droplet caps and pave to the substrate, thus inducing optical interference. This allows the on-surface patterning by pen writing of droplets. Specifically, drop-on-demand thin films are achieved with millimeter lateral size and uniformity up to 97% in subwavelength thickness (<100 nm), corresponding to an aspect ratio of over 30 000. The pixelated thin-film patterns of disks and lines in an 8-inch wafer scale are demonstrated, which enable low-emittance structural color paintings. Furthermore, the applications of these patterns for dual-band camouflage and infrared-to-visible encryption are investigated. This study highlights the potential of 2D material self-assembly in the large-scale preparation and multi-spectral application of thin film-based optical patterns.

2.
ACS Nano ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687972

RESUMO

Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 µA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.

3.
Adv Mater ; : e2313366, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459762

RESUMO

Ultrathin perfect absorber (UPA) enables efficient photothermal conversion (PC) in renewable chemical and energy systems. However, it is challenging so far to obtain efficient absorption with thickness significantly less than the wavelength, especially considering the common view that an ultrathin film can absorb at most 50% of incident light. Here, a highly light-absorbing and mechanically stable UPA is reported by learning from the honeycomb mirror design of the crab compound eyes. With the hollow apertures enclosed by the self-supporting ultrathin film of reduced graphene oxide and gold nanoparticles, the absorber achieves spoof-plasmon enhanced broadband absorption in solar spectrum and low radiative decay in infrared. Specifically, a strong absorption (87%) is realized by the apertures with cross-section thickness of 1/20 of the wavelength, which is 7.3 times stronger than a planar counterpart with the identical material. Its high PC efficiency up to 64%, with hot-electron temperature as high as 2344 K, is also experimentally demonstrated. Utilizing its low thermal mass nature, a high-speed visible-to-infrared converter is constructed. The absorber can enable high-performance PC processes for future interfacial catalysis and photon-detection.

4.
ACS Nano ; 18(4): 2730-2749, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221737

RESUMO

Composed of three-dimensional (3D) nanoscale inorganic bones and up to 99% water, inorganic hydrogels have attracted much attention and undergone significant growth in recent years. The basic units of inorganic hydrogels could be metal nanoparticles, metal nanowires, SiO2 nanowires, graphene nanosheets, and MXene nanosheets, which are then assembled into the special porous structures by the sol-gel process or gelation via either covalent or noncovalent interactions. The high electrical and thermal conductivity, resistance to corrosion, stability across various temperatures, and high surface area make them promising candidates for diverse applications, such as energy storage, catalysis, adsorption, sensing, and solar steam generation. Besides, some interesting derivatives, such as inorganic aerogels and xerogels, can be produced through further processing, diversifying their functionalities and application domains greatly. In this context, we primarily provide a comprehensive overview of the current status of inorganic hydrogels and their derivatives, including the structures of inorganic hydrogels with various compositions, their gelation mechanisms, and their exceptional practical performance in fields related to energy and environmental applications.

5.
Adv Mater ; 36(12): e2209661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657097

RESUMO

Water utilization is accompanied with the development of human beings, whereas gaseous moisture is usually regarded as an underexploited resource. The advances of highly efficient hygroscopic materials endow atmospheric water harvesting as an intriguing solution to convert moisture into clean water. The discovery of hygroelectricity, which refers to the charge buildup at a material surface dependent on humidity, and the following moisture-enabled electric generation (MEG) realizes energy conversion and directly outputs electricity. Much progress has been made since then to optimize MEG performance, pushing forward the applications of MEG into a practical level. Herein, the evolvement and development of MEG are systematically summarized in a chronological order. The optimization strategies of MEG are discussed and comprehensively evaluated. Then, the latest applications of MEG are presented, including high-performance powering units and self-powered devices. In the end, a perspective on the future development of MEG is given for inspiring more researchers into this promising area.

6.
Nature ; 624(7990): 74-79, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968404

RESUMO

Electrochemical capacitors are expected to replace conventional electrolytic capacitors in line filtering for integrated circuits and portable electronics1-8. However, practical implementation of electrochemical capacitors into line-filtering circuits has not yet been achieved owing to the difficulty in synergistic accomplishment of fast responses, high specific capacitance, miniaturization and circuit-compatible integration1,4,5,9-12. Here we propose an electric-field enhancement strategy to promote frequency characteristics and capacitance simultaneously. By downscaling the channel width with femtosecond-laser scribing, a miniaturized narrow-channel in-plane electrochemical capacitor shows drastically reduced ionic resistances within both the electrode material and the electrolyte, leading to an ultralow series resistance of 39 mΩ cm2 at 120 Hz. As a consequence, an ultrahigh areal capacitance of up to 5.2 mF cm-2 is achieved with a phase angle of -80° at 120 Hz, twice as large as one of the highest reported previously4,13,14, and little degradation is observed over 1,000,000 cycles. Scalable integration of this electrochemical capacitor into microcircuitry shows a high integration density of 80 cells cm-2 and on-demand customization of capacitance and voltage. In light of excellent filtering performances and circuit compatibility, this work presents an important step of line-filtering electrochemical capacitors towards practical applications in integrated circuits and flexible electronics.

7.
Nat Commun ; 14(1): 5702, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709765

RESUMO

Constant water circulation between land, ocean and atmosphere contains great and sustainable energy, which has been successfully employed to generate electricity by the burgeoning water-enabled electric generator. However, water in various forms (e.g. liquid, moisture) is inevitably discharged after one-time use in current single-stage water-enabled electric generators, resulting in the huge waste of inherent energy within water circulation. Herein, a multistage coupling water-enabled electric generator is proposed, which utilizes the internal liquid flow and subsequently generated moisture to produce electricity synchronously, achieving a maximum output power density of ~92 mW m-2 (~11 W m-3). Furthermore, a distributary design for internal water in different forms enables the integration of water-flow-enabled and moisture-diffusion-enabled electricity generation layers into mc-WEG by a "flexible building blocks" strategy. Through a three-stage adjustment process encompassing size control, space optimization, and large-scale integration, the multistage coupling water-enabled electric generator realizes the customized electricity output for diverse electronics. Twenty-two units connected in series can deliver ~10 V and ~280 µA, which can directly lighten a table lamp for 30 min without aforehand capacitor charging. In addition, multistage coupling water-enabled electric generators exhibit excellent flexibility and environmental adaptability, providing a way for the development of water-enabled electric generators.

8.
Water Res ; 244: 120447, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574625

RESUMO

Natural solar-powered steam generation provides a promising strategy to deal with deteriorating water resources. However, the practical applications of this strategy are limited by the tedious manufacturing of structures at micro-nano levels to concentrate heat and transport water to heat-localized regions. Herein, this work reports the fabrication of hierarchically porous aerohydrogel with enhanced light absorption and thermal localization at the air-solid interface. This aerohydrogel steam generator is fabricated by a simple yet controllable micropore generation approach to assemble air and hydrogel into hierarchically porous gas-solid hybrids. The tunable micropore size in a wide range from 99±49µm to 316±58µm not only enables contrasting sunlight absorptance (0.2 - 2.5µm) by reducing the reflection of solar light but also harnesses water transportation to the heating region via a capillary force-driven liquid flow. Therefore, a solar-vapor conversion efficiency of 91.3% under one sun irradiation was achieved using this aerohydrogel evaporator, reaching a ready evaporation rate of 2.76kg m-2 h-1 and 3.71kg m-2 h-1 under one and two sun irradiations, respectively. Our work provides a versatile and scalable approach to engineering porous hydrogels for highly efficient steam generation and opens an avenue for other potential practical applications based on this aerohydrogel.


Assuntos
Vapor , Água , Porosidade , Transporte Biológico , Comércio
9.
Adv Mater ; 35(29): e2211932, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37042443

RESUMO

Clean water scarcity and energy shortage have become urgent global problems due to population growth and human industrial development. Low-grade waste heat (LGWH) is a widely available and ubiquitous byproduct of human activities worldwide, which can provide effective power to address the fresh water crisis without additional energy consumption and carbon emissions. In this regard, 3D superhydrophilic polyurethane/sodium alginate (PU/SA) foam and LGWH-driven interfacial water evaporation systems are developed, which can precipitate over 80 L m-2  h-1 steam generation from seawater and has favorable durability for purification of high salinity wastewater. The excellent water absorption ability, unobstructed water transport, and uniform thin water layer formed on 3D skeletons of PU/SA foam ensure the strong heat exchange between LGWH and fluidic water. As a result, the heat-localized PU/SA foam enables the efficient energy utilization and ultrafast water evaporation once LGWH is introduced into PU/SA foam as heat flow. In addition, the precipitated salt on PU/SA foam can be easily removed by mechanical compression, and almost no decrease in water evaporation rate after salt precipitation and removal for many times. Meanwhile, the collected clean water has high rejection of ions of 99.6%, which meets the World Health Organization (WHO) standard of drinking water. Above all, this LGWH-driven interfacial water evaporation system presents a promising and easily accessible solution for clean water production and water-salt separation without additional energy burden for the society.

10.
ACS Nano ; 17(7): 6627-6637, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36961291

RESUMO

Tunable regulation of molecular penetration through porous membranes is highly desirable for membrane applications in the pharmaceutical and medical fields. However, in most previous reports additional reagents or components are usually needed to provide the graphene-based membranes with responsiveness. Herein, we report tunable arch-bridged reduced graphene oxide (rGO) nanofiltration membranes modulated by the applied voltage. Under a finite voltage of 5 V, the rGO membrane could completely reject organic/anionic molecules. With assistance of the voltage, the positive-charge-modified rGO membrane realized the universal rejection of both cationic and anionic dyes, also showing the valid modulation in harsh organic solvents. The efficient electrical modulation depended on the synergetic effects of Donnan repulsion and size exclusion, benefiting from the electric field enhancement in arch-bridged rGO structures. Furthermore, multicomponent separation was achieved by our electrically modulated rGO-based membranes, demonstrating their potential in practical applications such as pharmaceutical industries.

11.
Nat Commun ; 13(1): 6819, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357386

RESUMO

Harvesting energy from spontaneous water flow within artificial nanochannels is a promising route to meet sustainable power requirements of the fast-growing human society. However, large-scale nanochannel integration and the multi-parameter coupling restrictive influence on electric generation are still big challenges for macroscale applications. In this regard, long-range (1 to 20 cm) ordered graphene oxide assembled framework with integrated 2D nanochannels have been fabricated by a rotational freeze-casting method. The structure can promote spontaneous absorption and directional transmission of water inside the channels to generate considerable electric energy. A transfer learning strategy is implemented to address the complicated multi-parameters coupling problem under limited experimental data, which provides highly accurate performance optimization and efficiently guides the design of 2D water flow enabled generators. A generator unit can produce ~2.9 V voltage or ~16.8 µA current in a controllable manner. High electric output of ~12 V or ~83 µA is realized by connecting several devices in series or parallel. Different water enabled electricity generation systems have been developed to directly power commercial electronics like LED arrays and display screens, demonstrating the material's potential for development of water enabled clean energy.

12.
Adv Mater ; 34(41): e2205249, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007144

RESUMO

Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Grafite/química , Humanos , Aprendizado de Máquina , Água
13.
ACS Nano ; 16(8): 12813-12821, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914233

RESUMO

The booming portable electronics market has raised huge demands for the development of supercapacitors with mechanical flexibility and high power density in the finite area; however, this is still unsatisfied by the currently thickness-confined sandwich design or the in-plane interdigital configuration with limited mechanical features. Here, a spatial-interleaving supercapacitor (SI-SC) is first designed and constructed, in which the graphene microelectrodes are reversely stacked layer by layer within a three-dimensional (3D) space. Because each microelectrode matches well with four counter microelectrodes and all 3D spatial-interleaving microelectrodes have narrow interspaces that maintain the efficient ions transport in the whole device, this SI-SC has a prominent liner capacitance increase along with the device thickness. As a result, the high specific areal capacitance of 36.46 mF cm-2 and 5.34 µWh cm-2 energy density is achieved on the 100 µm thick device. Especially, the microelectrodes in each layer are interdigitated, ensuring the outstanding mechanical flexibility of SI-SC, with ∼98.7% performance retention after 104 cycles of bending tests, realizing the excellent integration of high area energy density and mechanical flexibility in the finite area. Furthermore, the SI-SC units can be easily integrated into wearable electronics to power wristwatches, light-emitting diodes (LEDs), calculators, and so on for practical applications.

14.
Nat Commun ; 13(1): 4561, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931668

RESUMO

Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development of graphene aerogels. Herein, we demonstrate a laser-engraving strategy toward graphene meta-aerogels (GmAs) with unusual characters. As the prerequisite, the nanofiber-reinforced networks convert the graphene walls' deformation from the microscopic buckling to the bulk deformation during the compression process, ensuring the highly elastic, robust, and stiff nature. Accordingly, laser-engraving enables arbitrary regulation on the macro-configurations of GmAs with rich geometries and appealing characteristics such as large stretchability of 5400% reversible elongation, ultralight specific weight as small as 0.1 mg cm-3, and ultrawide Poisson's ratio range from -0.95 to 1.64. Additionally, incorporating specific components into the pre-designed meta-structures could further achieve diversified functionalities.

15.
Sci Adv ; 8(28): eabo6688, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857517

RESUMO

Microbatteries (MBs) are promising candidates to provide power for various miniaturized electronic devices, yet they generally suffer from complicated fabrication procedures and low areal energy density. Besides, all cathodes of current MBs are solid state, and the trade-off between areal capacity and reaction kinetics restricts their wide applications. Here, we propose a dual-plating strategy to facilely prepare zinc-bromine MBs (Zn-Br2 MBs) with a liquid cathode to achieve both high areal energy density and fast kinetics simultaneously. The Zn-Br2 MBs deliver a record high areal energy density of 3.6 mWh cm-2, almost an order of magnitude higher than available planar MBs. Meanwhile, they show a polarity-switchable feature to tolerate confusion of cathode and anode. This strategy could also be extended to other battery systems, such as Zn-I2 and Zn-MnO2 MBs. This work not only proposes an effective construction method for MBs but also enriches categories of microscale energy storage devices.

16.
Nat Commun ; 13(1): 4335, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896593

RESUMO

Interfacial solar vapor generation is a promising technique to efficiently get fresh water from seawater or effluent. However, for the traditional static evaporation models, further performance improvement has encountered bottlenecks due to the lack of dynamic management and self-regulation on the evolving water movement and phase change in the evaporation process. Here, a reconfigurable and magnetically responsive evaporator with conic arrays is developed through the controllable and reversible assembly of graphene wrapped Fe3O4 nanoparticles. Different from the traditional structure-rigid evaporation architecture, the deformable and dynamic assemblies could reconfigure themselves both at macroscopic and microscopic scales in response to the variable magnetic field. Thus, the internal water transportation and external vapor diffusion are greatly promoted simultaneously, leading to a 23% higher evaporation rate than that of static counterparts. Further, well-designed hierarchical assembly and dynamic evaporation system can boost the evaporation rate to a record high level of 5.9 kg m-2 h-1. This proof-of-concept work demonstrates a new direction for development of high performance water evaporation system with the ability of dynamic reconfiguration and reassembly.

17.
Nat Commun ; 13(1): 2524, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534468

RESUMO

Environment-adaptive power generation can play an important role in next-generation energy conversion. Herein, we propose a moisture adsorption-desorption power generator (MADG) based on porous ionizable assembly, which spontaneously adsorbs moisture at high RH and desorbs moisture at low RH, thus leading to cyclic electric output. A MADG unit can generate a high voltage of ~0.5 V and a current of 100 µA at 100% relative humidity (RH), delivers an electric output (~0.5 V and ~50 µA) at 15 ± 5% RH, and offers a maximum output power density approaching to 120 mW m-2. Such MADG devices could conduct enough power to illuminate a road lamp in outdoor application and directly drive electrochemical process. This work affords a closed-loop pathway for versatile moisture-based energy conversion.

18.
Sci Adv ; 8(21): eabn8338, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622921

RESUMO

Multidimensional folded structures with elasticity could provide spatial charge storage capability and shape adaptability for micro-supercapacitors (MSCs). Here, highly crumpled in-plane MSCs with superior conformality are fabricated in situ and integrated by a fixture-free omnidirectional elastic contraction strategy. Using carbon nanotube microelectrodes, a single crumpled MSC holds an ultrahigh volumetric capacitance of 9.3 F cm-3, and its total areal capacitance is 45 times greater than the initial state. Experimental and theoretical simulation methods indicate that strain-induced improvements of adsorption energy and conductance for crumpled microelectrodes are responsible for the prominent enhancement of electrochemical performance. With outstanding morphological randomicity, the integrated devices can serve as smart coatings in moving robots, withstanding extreme mechanical deformations. Notably, integration on a spherical surface is possible by using a spherical mask, in which a small area of the microdevice array (3.9 cm2) can produce a high output voltage of 100 V.

19.
Nat Commun ; 13(1): 1863, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387998

RESUMO

Selenium (Se) is an appealing alternative cathode material for secondary battery systems that recently attracted research interests in the electrochemical energy storage field due to its high theoretical specific capacity and good electronic conductivity. However, despite the relevant capacity contents reported in the literature, Se-based cathodes generally show poor rate capability behavior. To circumvent this issue, we propose a series of selenium@carbon (Se@C) composite positive electrode active materials capable of delivering a four-electron redox reaction when placed in contact with an aqueous copper-ion electrolyte solution (i.e., 0.5 M CuSO4) and copper or zinc foils as negative electrodes. The lab-scale Zn | |Se@C cell delivers a discharge voltage of about 1.2 V at 0.5 A g-1 and an initial discharge capacity of 1263 mAh gSe-1. Interestingly, when a specific charging current of 6 A g-1 is applied, the Zn | |Se@C cell delivers a stable discharge capacity of around 900 mAh gSe-1 independently from the discharge rate. Via physicochemical characterizations and first-principle calculations, we demonstrate that battery performance is strongly associated with the reversible structural changes occurring at the Se-based cathode.

20.
Small ; 18(18): e2200916, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35355413

RESUMO

The filtering capacitor plays an essential role in the ever-increasing electronics for current stability in complicated environments. However, because of the low specific capacitance and bulky volume, current filtering devices have difficulty satisfying the harsh temperature environment and small size for supercomputers, electric vehicles, aircraft and so on. Therefore, an ultra-fast electrochemical capacitor is developed on the basis of vertically oriented graphene iongel electrodes (GI-EC), which demonstrates excellent alternate current line-filtering performance with both hot tolerance of up to 150 °C and a wide voltage window of 4 V. Because of the particularly oriented graphene nanosheets induced fast ion transport, this ionic electrochemical capacitor displays a high areal specific energy density of 1784 µF V2  cm-2 with a phase angle of -80.0° (120 Hz) at 150 °C, which is greater than most of the reported electrochemical capacitors. Moreover, it can filter arbitrary waveforms to smooth direct current signals and works well with a wide frequency range from 10 to 104  Hz. The easy integration of GI-ECs in series or parallel can also further deliver desired capacitances or high voltages. The GI-EC with high-rate performance, wide voltage window, and high-temperature adaptability presents a great promise for universally applicable filtering capacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...